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This paper poses the process of structural health monitoring in the context of a statistical pattern 

recognition paradigm. This paper particularly focuses on applying a statistical process control 

technique known as “X-bar control chart” to vibration-based damage diagnosis. A control chart 

provides a statistical framework for monitoring future measurements and for identifying new data 

that are inconsistent with past data. First, an auto-regressive (AR) model is fit to the measured time 

histories from an undamaged structure. Coefficients of the AR model are selected as the damage-

sensitive features for the subsequent control chart analysis. Next, control limits of the X-bar control 

chart are constructed based on the features obtained from the initial structure. Finally, the AR 

coefficients of the models fit to subsequent new data are monitored relative to the control limits. A 

statistically significant number of features outside the control limits indicate a system transition from 

a healthy state to a damage state. A unique aspect of this study is the coupling of various projection 

techniques such as principal component analysis, linear and quadratic discriminant operators with 

the statistical process control in an effort to enhance the discrimination between features from the 

undamaged and damaged structures. This combined statistical procedure is applied to vibration test 

data acquired from a concrete bridge column as the column is progressively damaged. The coupled 

approach captures a clearer distinction between undamaged and damaged vibration responses than 

applying a statistical process control alone.  

KEY WORD: statistical process control, structural health monitoring, control chart, projection 
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1. INTRODUCTION 

Many aerospace, civil, and mechanical engineering systems continue to be used despite aging and the 

associated potential for damage accumulation. Therefore, the ability to monitor the structural health 

of these systems is becoming increasingly important from both economic and life-safety viewpoints. 

Damage identification based upon changes in dynamic response is one of the few methods that 

monitor changes in the structure on a global basis. The basic premise of vibration-based damage 

detection is that changes in the physical properties, such as reductions in stiffness resulting from the 

onset of cracks or loosening of a connection, will cause changes in the measured dynamic response of 

the structure. 

Structural health monitoring has received considerable attention in the technical literature 

where there has been a concerted effort to develop a firm mathematical and physical foundation for 

this technology. Doebling et al. (1998) present a recent thorough review of vibration-based structural 

health monitoring methods. Because all vibration-based damage detection processes rely on 

experimental data with its inherent uncertainties, statistical analysis procedures are necessary if one is 

to state in a quantifiable manner that changes in the vibration response of a structure are indicative of 

damage as opposed to operational, and/or environmental variability. However, most references cited 

in this review focus on different methods for extracting damage-sensitive features from vibration 

response measurements. Few of the cited references take a statistical approach to quantifying the 

observed changes in these features.  

This paper casts the structural health-monitoring problem in the context of a statistical pattern 

recognition paradigm. This paradigm can be described as a four-part process: 1.) operational 

evaluation, 2.) data acquisition & cleansing, 3.) feature extraction & data reduction, and 4.) statistical 

model development. In particular, this paper focuses on Parts 3 and 4 of the process and these 

portions are discussed in detail below. More detailed discussion of the statistical pattern recognition 
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paradigm can be found in Farrar and Doebling (1999). The process is illustrated through application 

to time history data measured on undamaged and subsequently damaged concrete columns. Note that 

the primary objective of this study is to identify the existence of damage. The localization and 

quantification of damage are not addressed in this study.  

2. SPATIAL DATA COMPRESSION  

The distinction between feature extraction and data reduction is not always clear cut. Feature 

extraction is the process of identifying damage-sensitive properties from the measured vibration 

response, and this process often results in some form of data reduction. Data compression into feature 

vectors of small dimension is necessary if accurate estimates of the feature statistical distribution are 

to be obtained. The need for low dimensionality in the feature vectors is referred to as the "curse of 

dimensionality" and is discussed in general texts on density function estimation (Scott 1992).  

In this study, principal component analysis (PCA) is used to perform data compression prior 

to the feature extraction process when data from multiple measurement points are available. This 

process transforms the time series from multiple measurement points into a single time series 

preserving as much of relevant information as possible during the dimensionality reduction.  

If )t(u ji  (i = 1,.., m and j=1,.., l), denotes the response time histories corresponding to m 

measurement locations and sampled at l time intervals, a vector of the response components 

corresponding to the m measurement locations is formed at a given time, tj, as: 

[ ] T
21 )(tu)(tu)(tu)(t jmjjj L=u  (1) 

 

where, each time history is first normalized by subtracting it mean value. Then, the mm ×  covariance 

matrix, Ω , among spatial measurement locations summed over all time samples is given by 
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The eigenvalues, iλ , and eigenvectors, iv , of the covariance matrix satisfy: 

iii vv λ=Ω  (3) 
 

Here, an eigenvector iv  is also called a principal component. To reduce the m-dimensional vector 

( )tu  into a d-dimensional vector, xv(t), where d <  m, ( )tu  is projected onto the eigenvectors 

corresponding to first d largest eigenvalues:  

( ) [ ] ( )tt d1 uvvx T
v L=  (4) 

 

For the examples presented in Section 6.8, all time histories from the measurement points are 

projected onto the first principal component.  

3. FEATURE EXTRACTION 

Feature extraction is the process of the identifying damage-sensitive properties derived from the 

measured vibration response that allows one to distinguish between the undamaged and damaged 

structures. Typically, systematic differences between time series from the undamaged and damaged 

structures are nearly impossible to detect by eye. Therefore, other features of the measured data must 

be examined for damage detection.  

In this study, the coefficients of auto-regressive (AR) models are selected as damage sensitive 

features. The time series from an individual measurement point, or the spatially-compressed time 

series obtained from PCA, can be used to construct the AR models. In the AR(n) model the current 

point in a time series is modeled as a linear combination of the previous n points: 
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where y(t) is the time history at time t, φj is an unknown auto-regression coefficient, and e(t) is an 

random error with zero mean and constant variance. The φj’s are estimated by fitting the AR model to 

the time history data using the Yule-Walker method (Brockwell and Davis 1991). A detailed 

discussion on AR model order selection can be found in Box et al. (1994).  

For the application reported herein, the time signals are divided into smaller size time 

windows, and AR coefficients are estimated from each time window. Following this procedure, a 

large set of AR coefficients are obtained for subsequent damage diagnoses. As mentioned earlier, it is 

desirable to obtain many samples of the selected features for statistical analysis.  

4. DATA COMPRESSION FOR FEATURE VECTOR DISCRIMINATION  

Section 3 described methods for obtaining an n-dimensional feature space of AR coefficients. In such 

situation where multi-dimensional feature vectors exist, several monitoring procedures may be 

employed for feature vector discrimination. For example, each AR coefficient can be monitored by a 

variety of statistical procedures, or simultaneous monitoring of all AR coefficients can be done using 

multivariate statistical procedures. However, for feature vectors with a high dimensionality, the first 

approach can result in a large amount of data to be monitored and the visualization of the multivariate 

data can be very difficult. In this study the multi-dimensional feature vectors are projected onto one-

dimensional subspaces and the statistical discrimination procedure is applied to the one-dimensional 

variable. Two transformations, linear and quadratic projections, are presented to maximize the 

separation in features from the undamaged and damaged structures. 

In order to derive specific linear and quadratic projections, consider a situation in which there 

are only two classes (classes A and B) and multi-dimensional feature vector x is obtained. Fukunaga 

(1990) shows that a decision boundary, ( )xD , based on Bayes’ Theorem minimizes the probability of 
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error, which is the probability of misclassification of assigning a new feature to class A when, in fact, 

it belongs to class B, or vice versa. 

If classes A and B have normal distributions, the Bayes decision rule, ( )xD , can be written in 

a quadratic form (Fukunaga 1990): 

Vxx Qxx     )D( T +=  (6) 
 

where Q is a quadratic projection matrix and V is a linear projection. In the case where the 

covariance matrices for classes A and B are identical matrices, the classification boundary can be 

further simplified to a linear form:  

xFx T )D( =  (7) 
 

The Q, V, and F matrices will be estimated later in this section.  

The decision rule can be also viewed as a projection that maps multi-dimensional space x  to 

one-dimensional space ( )xD . We are particularly interested in defining a transformed feature 

( )xD=τ  such that the means of two classes are as far as possible and their variances are the smallest 

as possible after either quadratic or linear projection. These projections can be sought by maximizing 

the following Fisher criterion (Bishop 1995): 
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where Am  and Bm  are the mean vectors of the classes A and B distributions. AΣ  and BΣ  are the 

covariance matrices of each class. Am  and Bm  are the means of the projected feature in classes A 

and B. Aσ  and Bσ  are the corresponding standard deviations of the transformed features, 

respectively. Furthermore, the moments of the projected feature are related to those of the multi-

dimensional feature vector x as follows: 

ii mFTm =   and  FΣF ii
T2 =σ   for or B A=i  (9) 
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Taking derivatives of f with respect to F  and setting this quantity equal to zero yields the following 

linear projection (Bishop 1995): 

)()(2 BA
1

BA mmΣΣF −+= −  (10)
 

It is important to mention that the performance of the linear classifier will not be optimal unless AΣ  

and BΣ  are the same. It is only under the assumption of equal covariance matrices that the decision 

role reduces to a linear one. For the test data employed in Section 6, acceleration data from 

undamaged and damaged classes are observed to have unequal covariance matrices. Because the 

Bayesian decision boundary is quadratic under the more general circumstance of unequal covariance 

matrices between classes, the quadratic transformation yields the best discrimination power. The 

calculation of the quadratic term Q  and linear term V  in Equation (6) is computationally more 

intensive than the linear case. However, introducing a new variable iy , which represents the product 

of two ix ’s, Equation (6) can be linearized in the following form (Fukunaga 1990):  
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where ijq , iv are the components of Q  and V  respectively. iy  represents the product of the jx ’s 

and ia  is the corresponding entry in the Q  matrix. In addition, n is the order of the AR model or the 

dimension of AR coefficients defined in Equation (5).  

Let Y and X denote column vectors of iy ’s and jx ’s, respectively. Now, the following 

equation analogous to the linear case can be solved for Q  and V by introducing a new variables 

vector TTT ]XY[Z =  and letting E  and S  be the expected vector and covariance matrix of Z , 

respectively: 
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Then ia ’s and jv ’s can be rearranged to form the Q  matrix and V  vector. Note that the 

projection techniques presented here are used for a dimensionality reduction purpose as well as for a 

construction of a discriminant function. That is, the n-dimensional AR coefficient space is projected 

onto a single scalar space maximizing the mean differences between two classes. Damage diagnosis 

is conducted on the transformed feature using the statistical process control technique described in 

the following section. 

5. STATISTICAL MODELING: STATISTICAL PROCESS CONTROL 

Statistical model development is concerned with the implementation of the algorithms that analyze 

the distribution of extracted features to determine the damage state of the structure. The algorithms 

used in statistical model development fall into the three general categories: 1. Group Classification, 

2. Regression Analysis, and 3. Outlier Detection. The appropriate algorithm to use will depend on 

the ability to perform supervised or unsupervised learning. Here, supervised learning refers to the 

case were examples of data from damaged and undamaged structures are available. Unsupervised 

learning refers to the case were data is only available from the undamaged structure. This paper 

focuses on unsupervised learning methods.  

In this study control chart analysis, which is the most commonly used SPC technique and 

very suitable for automated continuous system monitoring, is applied to the selected features to 

investigate the existence of damage in the structure of interest. When the system of interest 

experiences abnormal conditions, the mean and/or variance of the extracted features are expected to 

change. Here an X-bar control chart is employed to monitor the changes of the selected feature 

means and to identify samples that are inconsistent with the past data sets. Application of the S 

control chart, which measures the variability of the structure over time, to the current test structure is 
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presented in Fugate et al. (2000). Several variations of the control charts can be found in 

Montgomery (1997). To monitor the mean variation of the features, the features (i.e., the AR 

coefficients or the transformed feature after linear or quadratic projection) are first arranged in 

subgroups of size p. ijτ  is the jth feature from the ith subgroup. The subgroup size p is often taken to 

be 4 or 5 (Montgomery 1997). If p is chosen too large, a drift present in individual subgroup mean 

may be obscured, or averaged-out. An additional motivation for the using subgroups, as opposed to 

individual observations, is that the distribution of the subgroup mean values can be reasonably 

approximated by a normal distribution as a result of central limit theorem.  

Next, the subgroup mean iX  and standard deviation iS  of the features are computed for each 

subgroup ( qi ,,1 L= : where q is the number of subgroups): 

( )iji mean τ=X  and )(S iji std τ=  (13)
 

Here, the mean and standard deviation are with respect to p observations in each subgroup. Finally, 

an X-bar control chart is constructed by drawing a centerline (CL) at the subgroup mean and two 

additional horizontal lines corresponding to the upper and lower control limits (UCL & LCL) versus 

subgroup numbers (or with respect to time). The centerline and two control limits are defined as 

follows:  

n
Z SCLLCL UCL, 2α±= , and )X(CL imean= , (14)

 

where the calculation of mean is with respect to all subgroups ( qi ,,1L= ). 2αZ  is the percentage 

point of the normal distribution with zero mean and unit variance such that ][ 2αZzP ≥  = 2α . The 

variance 2S  is estimated by averaging the variance 2S i  of all subgroups: )S(S 22
imean= . 

Note that, if iX  can be approximated by a normal distribution due to the central limit 

theorem, the control limits in Equation (14) correspond to a )1(100 α− % confidence interval. In 
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many practical situations, the distribution of features may not be exactly normal. However, it has 

been shown that the control limits based on the normality assumption can often be successfully used 

unless the population is extremely non-normal (Montgomery 1997). If the system experienced 

damage, this would likely be indicated by an unusual number of subgroup means outside the control 

limits; a charted value outside the control limits is referred to as an outlier in this paper. The 

monitoring of damage occurrence is performed by plotting iX  values obtained from the new data set 

along with the previously constructed control limits.  

6. APPLICATION TO CONCRETE COLUMNS 

Faculty, students and staff at the University of California, Irvine (UCI) performed quasi-static cyclic 

tests to failure on seismically retrofitted, reinforced-concrete bridge columns. Vibration tests were 

performed on the columns at intermittent stages during the static load cycle testing when various 

amounts of damage had been accumulated in the columns. The associated data obtained from one of 

the columns are used to investigate the applicability of statistical pattern recognition techniques to 

vibration-based damage detection problems. 

The configuration and dimension of the test column are shown in Figure 1. The test structure 

was a 137.5 in (349 cm) long, 24 in (61 cm) diameter concrete bridge column that was subsequently 

retrofitted to a 36 in (91 cm) diameter column. The column was retrofitted by placing forms around 

the existing column and placing additional concrete within the form. A 24 2in  concrete block, which 

had been cast integrally with the column, extends 18 in (46 cm) above the top of the circular portion 

of the column. This block was used to attach the hydraulic actuator to the column for quasi-static 

cyclic testing and to attach the electro-magnetic shaker used for the vibration tests. The column was 

bolted to the testing floor with 25 in (63.5 cm) thick in the UCI laboratory during both the static 
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cyclic tests and vibration tests. The detail of the test structure can be found at http://ext.lanl.gov 

/projects/damage_id. 

6.1 Test Procedure  

A hydraulic actuator was used to apply lateral loads to the top of the column in a quasi-static cyclic 

manner. The loads were first applied in a force-controlled manner to produce lateral deformations at 

the top of the column corresponding to 0.25 ∆ yT, 0.5 ∆ yT, 0.75 ∆ yT and ∆ yT. Here, ∆ yT is the lateral 

deformation at the top of the column corresponding to the theoretical first yield of the longitudinal 

reinforcement. The structure was cycled three times at each of these load levels. Next, a lateral 

deformation corresponding to the actual first yield ∆ y was estimated based on the observed response. 

Loads were then applied in a displacement-controlled manner, again in sets of three cycles, at 

displacements corresponding to 1.5 ∆ y, 2.0 ∆ y, 2.5 ∆ y, etc. until the ultimate capacity of the column 

was reached.  

Vibration tests were conducted on the column in its undamaged state, and after cycling 

loading at the subsequent displacement levels, ∆ y, 1.5 ∆ y, 2.5 ∆ y, 4.0 ∆ y, and 7.0 ∆ y. In this study, 

these vibration tests are referred to as damage level 0 thought 5, respectively. The excitation for the 

vibration tests was provided by an APS electro-magnetic shaker mounted off-axis at the top of the 

structure. The shaker rested on a steel plate attached to the top square block of the concrete column. 

Horizontal loading was transferred from the shaker to the structure through a friction connection 

between the shaker and the steel support plate. The shaker was controlled in an open-loop manner 

while attempting to generate 0 - 400 Hz uniform random signal. The RMS voltage level of this signal 

remained constant during all vibration tests. However, feedback from the column and the dynamics 

of the mounting plate produced an input signal that was not uniform over the specified frequency 

range. 
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6.2 Operational Evaluation 

Operational evaluation begins to set the limitations on what will be monitored and how to perform 

the monitoring as well as tailoring the monitoring to unique aspects of the system and unique features 

of the damage that is to be detected. Because the test structure was a laboratory specimen, operational 

evaluation was not conducted in a manner that would typically be applied to an in situ structure. 

However, because the vibration tests were not the primary purpose of this investigation, compromises 

had to be made regarding the manner in which the vibration tests were conducted. The primary 

compromise was associated with the mounting of the shaker where it would have been preferable to 

suspend the shaker from soft supports and apply the input at a point location using a stinger. These 

compromises are analogous to operational constraints that may occur with in situ structures. 

Environmental variability was not considered an issue because the tests were conducted in a 

laboratory setting. The available dynamic measurement hardware and software placed the only 

constraints on the data acquisition process. 

6.3 Data Acquisition and Cleansing 

Forty accelerometers were mounted on the structure as shown in Figure 1. These locations were 

selected based on the initial desire to measure the global bending, axial and torsional modes of the 

column. Note that at locations 2, 39 and 40 the accelerometers had a nominal sensitivity of 10mV/g 

and were not sensitive enough for the measurements being made. At locations 33, 34, 35, 36, and 37 

the accelerometers had a nominal sensitivity of 100mV/g. All other channels had accelerometers with 

a nominal sensitivity of 1V/g. An accelerometer on the sliding mass of the shaker provided a measure 

of the input force applied to the column. Analog signals from the accelerometers were sampled and 

digitized with a Hewlett-Packard 3566A dynamic data acquisition system. Data acquisition 
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parameters were specified such that 8-second time-histories discretized with 8192 points were 

acquired. No windowing function was applied to these time histories. 

Anti-aliasing filters were applied to further cleanse the data. Analog and digital anti-aliasing 

filters with cut-off frequencies of 12.8 kHz and 512 Hz, respectively, were used in this study. Data 

decimation was also used to cleanse the data. Although the data are sampled at 25.6 kHz, the 

decimation process yields an effective sampling rate of 1.024 kHz. Finally, an AC coupling filter that 

attenuates signal below 2 Hz was applied to remove DC offsets from the signal. To eliminate high-

frequency noise resulting from other experimental activities being conducted in the UC-Irvine 

Laboratory, the raw time series are passed through an seventh-order Butterworth low-pass filter with 

a cutoff frequency 150 Hz. These cleansing process significantly improved the quality of data. 

6.4 Feature Extraction and Data Compression 

The PCA, SPC and projection techniques are illustrated using the vibration test data obtained from 

the test column shown in Figure 1. First, the applicability of SPC to damage diagnosis problem is 

demonstrated using single AR coefficient obtained from individual measurement point. Here, the AR 

coefficients are defined as damaged-sensitive features and the subsequent control chart analysis is 

conducted using the AR coefficient (Section 6.5). Next, the advantage of projection techniques is 

investigated. Linear and quadratic projections are introduced to map multi-dimensional AR 

coefficient space into one-dimensional space to maximize the mean differences between the data sets 

obtained from the undamaged and damaged classes (Section 6.6). SPC analyses are then conducted 

on the transformed single-scale feature. Third, PCA is carried out to all response time series for 

spatial dimensionality reduction prior to feature selection and SPC analysis (Section 6.8). That is, all 

time series from 39 response points are projected onto the first principal component of the covariance 
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matrix of the time series. The subsequent feature selection and SPC analyses are performed based on 

this single time series that is a linear combination of the 39 measured time series.  

6.5 Statistical Modeling: X-bar Control Chart using Single AR Coefficient  

The 8192 point measured time series are first divided into 512 16-point time-windows, and AR(3) is 

fit to individual window resulting in 512 sets of AR coefficients. Then, using subgroup size 4, 128 

(=512/4) subgroup means are obtained. Figure 2 shows the damage diagnosis results using the first 

coefficient of the AR(3) model. Time histories from measurement point 1 shown in Figure 1 are used 

for the construction of the control chart. UCL, LCL, and CL denote the upper and lower control 

limits, and centerline obtained from the time series of the undamaged structure. The control limits 

corresponding to a 99% confidence interval are constructed by setting 01.0=α  in Equation (14). 

After the construction of the control limits, damage diagnoses using the X-bar chart are performed 

for the subsequent damage levels 1 through 5.  

Note that the extracted feature τ (the first AR coefficient in this case) is standardized prior to 

the construction of the X-bar control chart: The mean is subtracted from the feature and the feature is 

normalized by the standard deviation. Therefore, CL for all figures in this paper corresponds to zero. 

After establishing the control limits and centerline, features obtained at each damage level are plotted 

relative to the control limits and centerline obtained from the undamaged data. The outliers, which 

are samples outside the control limits, are marked by “+” sign in all figures. The features extracted at 

each damage level are also standardized in the same fashion as before. Note that the mean and 

standard deviation estimated from damage level 0 are used to normalize data from all the subsequent 

damage levels. 

The diagnosis results using the other AR coefficients are also summarized in Table 1. For this 

particular example, the third AR coefficient seems most indicative of damage, and the first 
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coefficient is very insensitive to damage. For damage levels 0 and 1, the numbers of total outliers out 

of 384 samples are 2 and 1, respectively. (there are three AR coefficients and 128 samples for each 

AR coefficient. Therefore a total of 384 samples are obtained.) These are equivalent to 0.52% and 

0.26% of outliers. Considering the fact that the constructed control limits correspond to a 99% 

confidence interval, features extracted from the in-control system can still produce approximately 1% 

of outliers without indicating any damage. Therefore, it is not clear if the system experienced any 

significant damage at damage level 1 based on the analysis of the X-bar control chart using the 

individual AR coefficient. 

6.6 Statistical Modeling: Control Chart Analysis after Linear or Quadratic Projection 

Next, the projection techniques are incorporated into the X-bar control chart. As shown in the 

previous example, some AR coefficients are more sensitive to damage than the others. Furthermore, 

constructing separate control charts for each AR coefficient would be time consuming. To overcome 

these difficulties, the construction of multiple control charts using individual AR coefficient is 

simplified into a single control chart using one-dimensional transformed feature. In the following 

examples, the three-dimensional AR coefficients are first projected onto one-dimensional space, and 

the X-bar chart is constructed based on the transformed feature. In general, the projection onto one-

dimension space leads to a loss of information, and classes well separated in the original multi-

dimensional space may be strongly overlapped in the projected space. However, by using the Fisher’s 

criterion in Equation (8), the projections are determined to maximize the class separation.  

Table 2 shows the results of process monitoring after a linear projection. Comparison of Table 

1 and Table 2 clearly reveals the improvement of diagnosis performance. Again, the diagnoses in 

Table 2 are performed using the time series from measurement point 1. Diagnosis results using the 

other measurement points are conducted and similar performance improvement is observed. 
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However, the diagnosis results are not presented because of space limitation. As mentioned earlier, 

the linear projection may not be the optimal projection in this example because the orders of two 

class covariance matrices (one from the undamaged case and the other from each damage level) are 

quite different. In theory, the quadratic projection is the optimal one in a sense of minimizing the 

error of misclassification. However, no significant performance difference between linear and 

quadratic projections is observed in this example (see Table 2). 

6.7 False Positive Alarm Testing 

While it is desirable to have features sensitive to damage occurrence, the monitoring system also 

needs to be robust against false-positive indication of damage. False-positive indication of damage 

means that the monitoring system indicates damage although no damage is present. To investigate the 

robustness of the proposed X-bar control chart against false-positive warning of damage, two 

separate tests are designed. 

In the first test, the time histories obtained from the undamaged state of the test structure are 

divided into two parts. The first half of the time series is employed to construct the control limits, and 

the false-positive testing is carried out using the second half of the time series. Note that the original 

time series are 8-second long with 8192 time points, and each half of the time series is 4-second long 

with 4096 points. The half of the time series is further divided into 256 sets of 16-point time-

windows, and AR(3) is again fit to each time window producing 256 sets of AR coefficients. Next, as 

mentioned before, four consecutive AR coefficients are grouped together resulting in 64 samples 

with subgroup size 4. Figure 3 (a) shows the construction of the control limits using the first half of 

the time series, and the fluctuation of the features extracted from the first half time series are plotted 

together. Figure 3 (b) presents the false-positive testing using the second half of the time series. 



 
17

For the second test, the control limits are established using the whole 8-second time histories 

from the undamaged state of the column, and the false-positive test is conducted using a 2-second 

time series measured from an independent vibration test of the undamaged column. Figure 3 (c) 

shows the result of damage diagnoses when the linear projection is applied. For all the cases, the 

number of outliers are less than or equal to two. Therefore, the two sets of tests presented here have 

demonstrated that damage diagnosis using the combination of X-bar control chart and projection 

techniques appears to be robust against false-positive indication of damage for the data studied. 

Again, similar results are obtained using the quadratic projection. 

6.8 Principal Component Analysis 

In the previous examples, all damage diagnoses are individually carried out for each measurement 

points. The PCA conducted on the covariance matrix of 39 response time series indicates that the 

responses of 39 measurement points are closely correlated. Figure 4 shows that the first principal 

component alone holds about 30% of total information. Therefore, in the following examples, raw 

time series from the 39 measurement points are first projected onto the first principal component 1v  

as shown in Equation (4). Then, the subsequent feature extraction and X-bar control chart analyses 

are performed in the same fashion as before. Because the linear and quadratic projections have 

produced similar results, only the damage diagnosis results after PCA and the linear projection at 

each damage level are displayed in Figure 5. However, diagnosis results after the quadratic projection 

are also summarized in Table 3. The results of Table 3 are equivalent to or slightly better than those 

of Table 2 and much better than those of Table 1. That is, PCA condenses all time series information 

spatially distributed along the column, and successfully identifies all five damage cases.  
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7. SUMMARY AND DISCUSSION 

A vibration-based damage detection problem is cast in the context of statistical pattern recognition. 

This statistical approach is used to identify the plastic hinge deformation of a concrete bridge column 

solely based on the vibration test data. First, the applicability of SPC to the damage diagnosis 

problem is demonstrated using individual time series from different measurement points. AR models 

are constructed using the measured time signals, and damage diagnoses using X-bar control charts 

are performed using an individual AR coefficient as a damage-sensitive feature. The X-bar control 

chart provides a framework for monitoring changes in the selected feature mean values and for 

identifying samples that are inconsistent with the past data sets. Next, linear and quadratic projections 

are introduced to map the multi-dimensional AR coefficients into one-dimensional feature space to 

maximize the differences in the mean values between the two data sets being compared. The control 

chart analysis is then conducted on the transformed single dimension feature data. Third, the 

robustness of the proposed approach against false-positive indication of damage is demonstrated 

using two separate time histories obtained from the initial test structure. Finally, PCA is carried out 

on all response time series for spatial dimensionality reduction prior to feature extraction. That is, all 

time series from multiple measurement points are projected onto the first principal component of the 

time series covariance matrix, and the subsequent feature selection is performed using this 

compressed time series.  

The projection techniques improved the performance of control chart analysis compared to 

the damage diagnosis using the individual AR coefficient. When the projection techniques and PCA 

are combined, the control charts successfully indicated the system response anomaly for all 

investigated damage levels by showing a statistically significant number of outliers outside the 

control limits. It should be also noted that this study is carried out in an unsupervised learning mode. 

Although the projection techniques require two separate data sets, no claim is made that they are 
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from two different classes. It is only assumed that there is one data set from the undamaged class and 

the other data set is from an unknown class. The ability to apply unsupervised damage detection 

techniques to civil engineering structures is very important because response data from a similar 

damaged system are rarely available.  

In general, the observation of a large number of outliers in the control chart does not 

necessarily indicate that the structure is damaged, but only that system has varied to cause a 

statistically significant change in its vibration response. This variability can be caused by a variety of 

environmental and operational conditions that the system is subjected to. Because the influence of 

operational and environmental factors on the dynamic characteristics of the test structure is minimal 

for the presented laboratory test, the deterioration of the structure was assumed to be the main cause 

of the abnormal changes of the system. However, operational and environmental conditions such as 

wind, humidity, intensity and frequency of traffic loading should be taken into account for 

applications to in-situ civil engineering infrastructures. A novel approach to data normalization, 

combining Auto-Regressive (AR) and Auto-Regressive with eXogenous inputs (ARX) techniques, is 

developed to explicitly incorporate the environmental and operational conditions into the statistical 

pattern recognition paradigm so as that the effect of damage on the vibration response could be 

discriminated from these effects, and to prevent the operational and environmental variability from 

causing false-positive indications of damage (Sohn et al. 2001). 

The presented approach is very attractive for the development of an automated continuous 

monitoring system because of its simplicity, minimum interaction with users, and a seamless process 

of continuous data stream analysis. A research effort is underway to integrate the proposed diagnosis 

algorithm into a sensing unit through a programmable micro-processing chip. The processed data 

output of these sensing units can be further monitored at a central facility using a wireless 
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communication system. Because signal processing and damage diagnosis can be conducted 

independently at an individual sensor level, many issues related to data transmission, such as time 

synchronization among the multiple sensors, can be simplified. Finally, the only output to the end 

user will be a simple indication of the structure safety using green, yellow, or red lights. This strategy 

offers a potential for a significant breakthrough in structural health monitoring technology through an 

integrated sensing/data interrogation process that has not been attempted to date. 

Several issues remain for further study. This study focuses only on the identification of 

damage existence. Based on personal conversation with bridge field engineers, building owners, 

bridge managers, and insurance companies, their utmost urgent need for civil infrastructures is 

mainly to investigate the presence of damage. Then, visual inspections or more sophisticated 

localized nondestructive diagnosis techniques can be applied to pinpoint and quantify structural 

deterioration. The localization and quantification of damage has not been addressed in this current 

study. The extension of this approach to damage localization is addressed in Sohn and Farrar (2000). 
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Figure 1: Column dimensions and photo of an actual test structure. 
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Figure 2: X-bar control chart using the first AR coefficient 
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Figure 3: False-positive testing using linear projection 
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Figure 4: PCA of the covariance matrix of 39 response points 
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Figure 5: X-bar control chart of the AR coefficients after principal component analysis of all 

measurement points and linear projection 
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Table 1: Outlier numbers of X-bar control chart using different AR coefficients 
Damage Level AR 

coefficient 0 1 2 3 4 5 

1α  0/128* 0/128 6/128 6/128 2/128 1/128 

2α  0/128 0/128 6/128 10/128 30/128 23/128 

3α  2/128 1/128 12/128 31/128 77/128 88/128 
Total # of 
outliers 

2/384 
(0.52%) 

1/384 
(0.26%) 

24/384 
(6.25%) 

47/384 
(12.24%) 

109/384 
(28.39%) 

112/384 
(29.17%) 

*1/128 indicates that there is a single outlier out of 128 sample data points. 
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Table 2: Outlier numbers of X-bar control chart using linear or quadratic projection 
Damage Level Projection 

0 1 2 3 4 5 
Linear 1/128* 5/128 24/128 125/128 121/128 127/128 

Quadratic+ 3/128 3/128 34/128 128/128 127/128 128/128 
*1/128 indicates that there is a single outlier out of 128 sample data points. 
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Table 3: Damage diagnosis results after PCA and linear/quadratic projections 
Damage Level Projection 

0 1 2 3 4 5 

Linear 1/128* 

(0.78%) 
7/128 

(5.47%) 
127/128 
(99.22%) 

128/128 
(100.0%) 

120/128 
(93.75%) 

120/128 
(93.75%) 

Quadratic 1/128 
(0.78%) 

7/128 
(5.47%) 

126/128 
(98.44%) 

127/128 
(99.22%) 

121/128 
(94.53%) 

124/128 
(96.88%) 

*1/128 indicates that there is a single outlier out of 128 sample data points. 
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